Chapter 1

Prob. 1.1

Which semiconductor in Table I-I has the largest E_g ? the smallest? What is the corresponding λ ? How is the column III component related to E_g ?

largest E_g : ZnS, 3.6 eV.

$$\lambda = \frac{1.24}{3.6} = 0.344 \mu m$$

smallest E_g : InSb, 0.18 eV.

$$\lambda = 6.89 \mu m$$

Note Al compounds have larger E_g than the corresponding Ga compounds, which are larger than In compounds.

Prob. 1.2

Here we need to calculate the maximum packing fraction, treating the atoms as hard spheres.

Nearest atoms are at a separation $\frac{1}{2} \times \sqrt{(5 \times \sqrt{2})^2 + 5^2} = 4.330 \text{Å}$

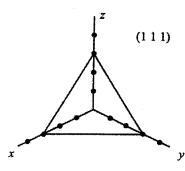
Radius of each atom = $\frac{1}{2} \times 4.330 \text{ Å} = 2.165 \text{ Å}$

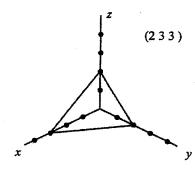
Volume of each atom = $\frac{4}{3}\pi (2.165)^3 = 42.5 \text{\AA}^3$

Number of atoms per cube = $1 + 8 \times \frac{1}{8} = 2$

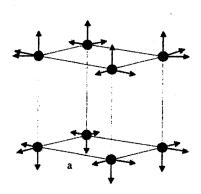
Packing fraction = $\frac{42.5 \times 2}{(5)^3}$ = 68%

Prob. 1.3
(a) Label planes:

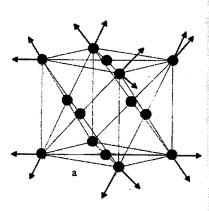




(b) Draw equivalent directions in a cube

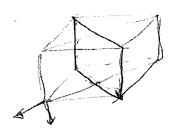


<1 0 0> all edges

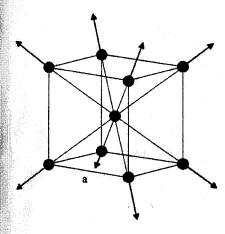


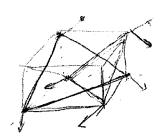
<1 1 0> all face diagonals

(Need not show atoms)



2





<1 1 1> all body diagonals

<u>Prob. 1.4</u>
We need to calculate the volume density of Si, its density on the (110) plane and the distance between two adjacent (111) planes.

Si FCC lattice with basis of 2 atoms

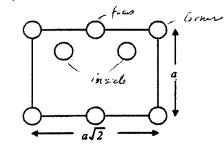
Number of atoms per cube = $\left(8 \times \frac{1}{8} + \frac{1}{2} \times 6\right) \times 2$

Density = $\frac{8}{(5.43 \times 10^{-8})^3} = 5.00 \times 10^{22} \text{ cm}^{-3}$

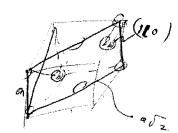
Diamond lattice

 $8\left(\frac{1}{6}\right) + 6\left(\frac{1}{2}\right) + 4 = 8$ Comm face 1-5:66 atoms

On the (110) plane we have 4 atoms on corners, 2 on the top and bottom planes, and 2 interior (see Fig. 1-a).



(年)4+ を(2)+2=4



(110) plane:
$$\frac{4 \times \frac{1}{4} + \frac{1}{2} \times 2 + 2}{(5.43 \times 10^{-8})(\sqrt{2} \times 5.43 \times 10^{-8})} = 9.59 \times 10^{14} \text{ cm}^{-2}$$

Basis of Si crystal at 0 and $\frac{a}{4}$, $\frac{a}{4}$, $\frac{a}{4}$ which is along [111].

Distance = $\sqrt{3} \left(\frac{a}{4} \right) = 2.39 \text{Å}.$

 $d = \frac{a}{\sqrt{h^2 + R^2 + R^2}}$

Prob. 1.5

Using the hard-sphere model, find the lattice constant of InSb, the volume of the primitive cell and the atomic density on the (110) plane.

$$\frac{\sqrt{3}a}{4} = 1.44 + 1.36 = 2.8 \text{ Å}$$
$$a = 6.47 \text{ Å}$$

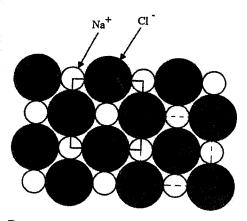
In FCC, unit cell has 4 lattice points. Therefore, volume of primitive cell = $\frac{a^3}{4}$ = 67.7Å³

Area of (110) plane = $\sqrt{2}a^2$

Density of In atoms =
$$\frac{4 \times \frac{1}{4} + 2 \times \frac{1}{2}}{\sqrt{2}a^2} = \frac{\sqrt{2}}{a^2} = 3.37 \times 10^{14} \text{ cm}^{-2}$$

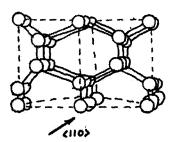
Same number of Sb atoms = 3.37×10^{14} cm⁻²

<u>Prob. 1.6</u> Draw NaCl lattice (1 0 0) and unit cell.



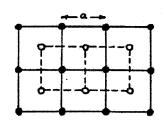
Two possible unit cells are shown, with either Na^+ or Cl^- at the corners.

Prob. 1.7

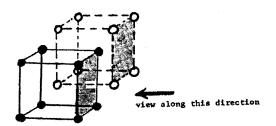


This view is tilted slightly from (110) to show the alignment of atoms. The open channels are hexagonal along this direction.

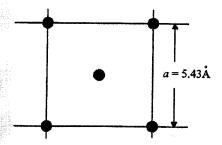
Prob. 1.8



The shaded points are one sc lattice; the open points are the interpenetrating sc, located a/2 behind the plane of the front shaded points.



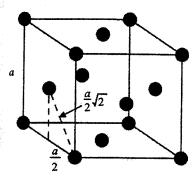
Prob. 1.9
(a) Find the number of Si atoms/cm 2 on the surface of a (1 0 0) oriented Si wafer.



Each a^2 has $1 + \frac{1}{4}(4) = 2$ atoms on the surface.

$$\frac{2 \text{ atoms/cell}}{(5.43 \times 10^{-8})^2 \text{ cm}^2/\text{cell}} = 6.78 \times 10^{14} \text{ cm}^{-2}$$

(b) What is the distance (in \hat{A}) between nearest In neighbors in InP?



In atoms are in an fcc sublattice with $a = 5.87\text{\AA}$, nearest neighbors are

$$\frac{a}{2}\sqrt{2} = \frac{5.87}{2}\sqrt{2} = 4.15\text{Å}$$

Prob. 1.10

Find NaCl density.

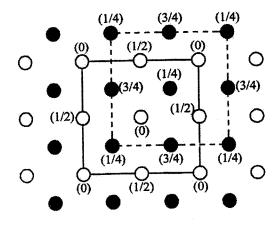
Na+: atomic wt. 23, radius 1 Å. CI: atomic weight 35.5, radius 1.8 Å.

The unit cell contains $\frac{1}{2}$ Na and $\frac{1}{2}$ Cl atoms. Using the hard sphere approximation, a = 2.8 Å.

density =
$$\frac{\frac{1}{2}(23+35.5)/(6.02\times10^{23})}{(2.8\times10^{-8})^3}$$
 = 2.2 g/cm³

Prob. 1.11

Label atom planes in Fig. 1.8b.

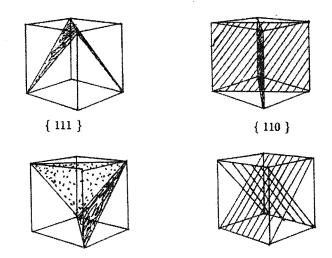


Prob. 1.12

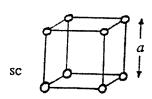
Find atoms/cell and nearest neighbor distance for sc, bcc, and fcc lattices. (see solution to Prob. 1.5)

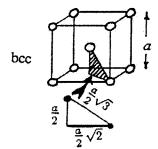
for sc	atoms/cell = nearest neighbor =	$\frac{1}{8}(8) = 1$
for bcc	atoms/cell = nearest neighbor =	$\frac{\frac{1}{8} + 1}{\frac{a}{2}\sqrt{3}} = 2$
for fcc (see Example 1-1)	atoms/cell = nearest neighbor =	$\frac{4}{\frac{1}{2}}a\sqrt{2}$

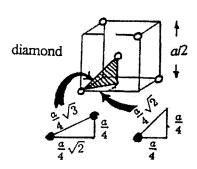
Prob. 1.13
Show four {111} planes. Repeat for {110} planes.



Prob. 1.14
Find fraction occupied in sc, bcc, diamond.







atoms/cell = $\frac{1}{8}(8) = 1$ nearest neighbor distance = amaximum sphere radius = a/2vol. of each sphere = $\frac{4}{3}\pi(\frac{a}{2})^3$ total occupied vol.

= 1 atom/cell $\times \frac{\pi}{6}a^3$ vol. of unit cell = a^3 fraction occupied = $\frac{\pi}{6}$ = 0.52

2 atoms/cell nearest neighbor distance = $\frac{a}{2}\sqrt{3}$ $r_{max} = \frac{a}{4}\sqrt{3}$ fraction occupied = $(\frac{4}{3}\pi(\frac{a}{4}\sqrt{3})^3 \times 2)/a^3$ = $\frac{\pi}{8}\sqrt{3} = 0.68$

8 atoms/cell (4 from fcc + 4 at $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$ from fcc atoms) nearest neighbor distance = $\frac{a}{4}\sqrt{3}$ fraction occupied = $(\frac{4}{3}\pi(\frac{a\sqrt{3}}{8})^3 \times 8)/a^3$ = $\frac{\pi}{16}\sqrt{3} = 0.34$

Prob. 1.15
Find Ge and InP densities as in Example 1-3.

The atomic weight of Ge is 72.6; for In, 114.8; for P, 31.

For Ge: a = 5.66Å, 8 atoms per cell

$$\frac{8}{a^3} = \frac{8}{(5.66 \times 10^{-8})^3} = 4.41 \times 10^{22} \text{ atoms/cm}^3$$

density =
$$\frac{4.41 \times 10^{22} \times 72.6}{6.02 \times 10^{23}}$$
 = 5.32 g/cm⁻³

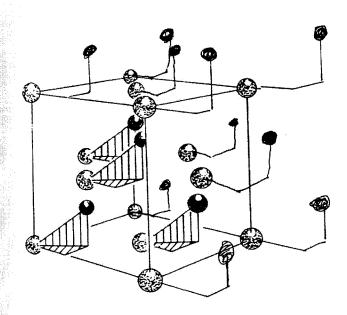
For InP: a = 5.87Å, 4 In + 4 P per cell

$$\frac{4}{a^3} = \frac{4}{(5.87 \times 10^{-8})^3} = 1.98 \times 10^{22} \text{ atoms/cm}^3$$

density =
$$\frac{1.98 \times 10^{22} \times (114.8 + 31)}{5.02 \times 10^{23}}$$
 = 4.79 g/cm⁻³

Prob. 1.16

Sketch diamond lattice and show only four atoms in the interpenetrating fcc are in the unit cell.



Prob. 1.17

What composition of AlSbAs is lattice matched to InP? InGaP to GaAs? What are the E_g 's?

From Fig. 1-15 $AlSb_xAs_{1-x}$ ternary crosses the InP lattice constant at x=0.43 where $E_g=1.9~\rm eV$

 $In_xGa_{1-x}P$ crosses the GaAs lattice constant at x = 0.48, where $E_g = 2 \text{ eV}$

Prob. 1.18

What weight of As $(k_d = 0.3)$ should be added to 1 kg Si to achieve 10^{15} cm⁻³ doping during initial Czochralski growth?

The atomic weight of As is 74.9. $\frac{3}{L_{cos}}$ $L_{cos} = k_d C_L$, thus $C_L = 10^{15} / 0.3 = 3.33 \times 10^{15} \text{ cm}^{-3}$ Calculating the melt volume from the weight of Si only, and neglecting the difference in density for solid and molten Si,

$$\frac{1000 \text{ g of Si}}{2.33 \text{ g/cm}^3} = 429.2 \text{ cm}^3 \text{ of Si}$$

 $3.33 \times 10^{15} \text{cm}^{-3} \times 429.2 \text{cm}^{3} = 1.43 \times 10^{18} \text{ As atoms}$

$$\frac{1.43\times10^{18}\times74.9}{6.02\times10^{23}}\int_{s_{11}}^{23} = 1.8\times10^{-4} \text{ g} = 1.8\times10^{-7} \text{ kg of As.}$$